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Highlights

3D efficient self-supervised DLO reconstruction algorithm: 
• Efficient No-Label Training: Enables data collection in real-world settings, even manually.

• Robust 3D State Inference: Reconstructs DLO from a single frame, even with severe occlusions.
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Framework

Partial Point Cloud
3N ×

pP

Self-supervised DLO occlusion single-frame reconstruction framework:
• A. Self-supervised DLO Point Cloud Completion

• B. Ordered Key Points Generation
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Clustering Sorting B-Spline Fitting
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Self-supervised DLO occlusion single-frame reconstruction framework:
• A. Self-supervised DLO Point Cloud Completion

• B. Ordered Key Points Generation

Framework
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Innovations
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Memory module DLO shape constraints
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Extract memory across samples by max pooling

to reinforce the supervisory signals.

Integrate DLO priors, like smooth and elongated 

shapes, to enhance reconstruction performance.
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Experiments
Simulation Experiments—Synthetic Dataset Generation
• The DLO has randomly moving endpoints, while an occlusion cube moves to simulate occlusions.

• 7,000 DLO samples, split into training, validation, and test sets with an approximate 7:2:1 ratio.
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Experiments
Simulation Experiments—Results
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• P2C: Original P2C[4] in our framework.
• MP2C: P2C with our memory module.
• MP2CDLO: MP2C with our DLO shape constraints.

• Evaluation metrics comparison and ablation study on synthetic DLO datasets.



Experiments
Simulation Experiments—Results

7

Input MP2CDLO (Ours)Ground Truth DLOFTBsLv Sun

• Reconstruction visualization comparison on synthetic DLO datasets.



Experiments
Real-world Experiments—Training Stage
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• Simplify data collection by manual manipulation of both ends of the DLO under an RGB-D camera.



Experiments
Real-world Experiments—Inference Stage
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• Normal Scenario: Occasional occlusions occur when two arms manipulate the DLO.



Experiments
Real-world Experiments—Inference Stage
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• Complex Scenario: Both occlusions and various self-intersections may occur simultaneously.
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Experiments
Real-world Experiments—Inference Cases
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Contributions

• Self-supervised Reconstruction Framework：Efficiently reconstructs DLO from partial point clouds.

• Memory Module：Enhances completion by consolidating prototype information across samples.

• DLO Shape Constraints：Leverages structural priors for better DLO representations.
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Thank you !

For more details, please refer to our project website: https://mp2cdlo.github.io/MP2CDLO/
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